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ABSTRACT

Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules

are presented. Guidelines for inclusion of results into these tables are outlined, and new entries since July 2024 are reviewed.

1 | Introduction

Since January 1993, ‘Progress in Photovoltaics’ has published six
monthly listings of the highest confirmed efficiencies for a range
of photovoltaic cell and module technologies [1-3]. Providing
guidelines for the inclusion of results into these tables not only
provides an authoritative summary of the current state of the
art but also encourages researchers to seek independent confir-
mation of results and to report results on a standardized basis.
In Version 33 of these tables, results were updated to the new
internationally accepted reference spectrum (International
Electrotechnical Commission IEC 60904-3, Ed. 2, 2008).

The most important criterion for the inclusion of results into
the tables is that they must have been independently measured
by a recognized test centre listed in Versions 61 and 62 (also
updated in 64). A distinction is made between three different
eligible definitions of cell area: total area, aperture area and des-
ignated illumination area, as also defined elsewhere [2] (note
that, if masking is used, masks must have a simple aperture
geometry, such as square, rectangular or circular—masks with
multiple openings are not eligible). ‘Active area’ efficiencies are

© 2024 John Wiley & Sons, Ltd.

not included. There are also certain minimum values of the area
sought for the different device types (above 0.05cm? for a con-
centrator cell, 1cm? for a one-sun cell, 200 cm? for a ‘submodule’
and 800 cm? for a module).

Tabled results are reported for cells and modules made from
different semiconductors and for subcategories within each
semiconductor grouping. From Version 36 onwards, spectral re-
sponse information is included (when possible) in the form of
a plot of the external quantum efficiency (EQE) versus wave-
length, either as absolute values or normalized to the peak
measured value. Current-voltage (IV) curves have also been
included where possible from Version 38 onwards.

The highest confirmed ‘one sun’ cell and module results are re-
ported in Tables 1, 2, 3 and 4. Any changes in the tables from
those previously published [1] are set in bold type. In most
cases, a literature reference is provided that describes either the
result reported, or a similar result (readers identifying improved
references are welcome to submit to the lead author). Table 1
summarizes the best-reported measurements for ‘one-sun’ (non-
concentrator) single-junction cells and submodules.

Progress in Photovoltaics: Research and Applications, 2025; 33:3-15
https://doi.org/10.1002/pip.3867


https://doi.org/10.1002/pip.3867
mailto:
https://orcid.org/0000-0002-8860-396X
https://orcid.org/0000-0003-1924-1288
mailto:m.green@unsw.edu.au
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fpip.3867&domain=pdf&date_stamp=2024-11-19

(senunuo))

[tz 0g] st1e0 TeL1es £ ‘dreys (S1/0) 1LSIV 669 a61°0C oPSL0 (ep) s5°9T o’ 0F L 0T (dmpowrurwr) 9Aq

[tz 0c] dreys (T1/6) LSIV TIL ol¥'TT vvL0 (ep) S00°'T WOF6TL (1199) 24
PaznIsuas oA

[6T] SI199 6T “ASOLIUN /LOTA (¥2/¥) ASI-944 €'8L q9CT'TT 2SST'T (ep) £5°S1C wl 0F9°0C (srnpowqns) IIYSA0IdJ

(smpourrurTy)

[8T] SI192 8 ‘STYAS/SAN (¥2/6) WAAN S°08 qol€PT 2SST'T (ep) sz 0z wS'0FTET IYSA0IdJ

[LT] NuIsISamUyIION (£2/L) 110dmaN 0Ts 6£°9C 91T (ep) L¥€0'T w8'0FT'ST (1199) @r3sa012g
QMYSAOI_d

[9T] LSIV (L1/2) 1SIV 0'sL qCL'6T 0SS°0 (ep) #+0°1 3€0F6'TT (1199 dur(RIsAI00IoTW) IS

[ST] LSTV (/L) LSTV 869 p9€°91 968°0 (ep) 100°T 13€°0F 01 (1199 snoydroure) 1
wﬁ“:.mum%qu.Hqu\mSOSQHOE&N

[¥1] mMSNN (L1/¢) THIN 1°S9 GlL'1T €80L°0 (ep) €IT'T T0F00L (1199) S1LZD

[€1] s1199 ¥ ‘SVO/do1 (rz/6) WAAN LL9 qC8'VE 2€L0S°0 (ep) Lv'0T €0FS6II (emmpowrurwr) 9SS LZD

[€T] SVD/do1 rT/¥) WAIN $'69 406°LE 60150 (ep) T0T'T COFSHET (1199) 8SS1ZD

[1] sse[s uo ‘refos 18114 (¥1/8) 110dmaN ¥'6L pST0E 65L8°0 (de) €290°1 $0F0TC (1199) 3LPD

[TT] s1199 001 ‘sroueAy (€2/9) THIAN T'sL [SS"6€ ¥€89°0 (de) 925 7'0FE€0C (dmpowqgns) 9SSHID

[0T] 1on3u01,] IE[OS (8T/11) ISIV ¥08 185°6€ ¥ELO (ep) €¥0'T SOFSEET (9213-pD) (1199) SOID
wﬁwﬁowoo_wﬂo Wy ury, L,

[6] THIN (€1/9) THIN 978 WSTTE 6£6°0 (de) 800°1 S 0FTYT (1190 aur[[eIshid) Jui

[8] aremsqns 9D ‘I1Y (S6/T1) THIN L'6L €T 7660 @10t SOF+'8L (surreys£ropnuw) syen

[L] seotae@ BN Y (81/01) ASI-OUA L98 18L°6T TLTTT (de) 866°0 90FI'6C (1190 wWy-uIyy) syeo
SI9 A-TIT

[9] (sse[d uo wrig >) 1e[0S HSD (L0/8) AST-OUA TeL 2L 6T »C6%°0 (de) 076 €0FS01 (SpowTuTur W-uIy)) 1S

(s[npouwgns

[s] CGrory wiri g¢) [oxatos F1/¥) THIN €08 p205°8¢ oL89°0 (de) L'652 YOFTIC IoJSueI] UuIy)) IS

[¥] 04.LH 2d£31-u TONOT (vz/6) HASI L98 aSE'TY 9ShL'0 (3) TLs9t W OF VLT (1199 dut[[eISAId) IS
UooI[IS
uondrrosaq (93ep) 913Ud2 1S9, (%) 1039%F 1114 (pwo > (zund) vaxy (%) Aduaroryyg UoI)BIIJISSBID

/v *r

(129018 £0-€LT-D W.LSV 10 800T

1670609 DHIL) DoST 18 (;W/M 000T) Wn12ads G TNV [BqO[3 8] Jopun PaINSBaW SIIOUSIOIJJS S[NPoWns Pue [[39 [B1IISa118) uonoun(-sjuts paurijuo) | [ATIV.L

1099159x, 2025, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/pip.3867 by Epfl Library Bibliothéque, Wiley Online Library on [13/02/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Progress in Photovoltaics: Research and Applications, 2025



1099159x, 2025, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/pip.3867 by Epfl Library Bibliothéque, Wiley Online Library on [13/02/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

*SIOTADP TRIIUIIS JO AJITIQRIS 9Y) MIIARI [67] PUE [§7] SeoUId)ay "oouewIofIad [eniuy,

*S3[qB) 9SAY) JO £ UOISIOA UT pajIodal 9AIND 33e)[0A-JUIIND puk dsuodsal [e1)oadsy

'S9[qe) 9SAY) JO 9§ UOISIDA UT pajIodar 9AIND a31[0A-IULLIND pue dsuodsar [e1)oadsy

'S9[qe) 3SAY) JO TH UOISIIA UT pajIrodal aAINd 98e)[0A-JuaIIND pue asuodsal [endads,

*SIOTADP TR[IUIIS JO AJITIQRIS ) SMITADI [£7] 90UISJY AOUSIOIIJ [BNIUT,

'S9OIASP TR[TUIIS JO AJI[IqR)IS ) MIIAdI [97] pue [G7] s9ouaI1ajay -doueuriofiad [eNIUT

"0,08 18 3Y3I[uns T 03 2nsodxa y-000T £q pazI[Iqels;

*S9[qB) 953} JO 9 UOISIDA UI Pa310dal 9AIND 93BI[0A-IULIND pPuUB asu0dsal [e130adSy

'S9qe) 953} JO 79 UOISIIA UI pa310dal aaInd 28e)1[0A-1Ua1IND pue asuodsal [enoads,

'S9qe] 353} JO S UOISIIA Ul pa110dal 941N 93BI[0A-JUSLIND puk dsuodsal [e1103ds;

*S3[q) 953} JO ()G UOISIDA U Pa310dal 9AINd 93BI[0A-JUALIND pue dsuodsal [enoads,

*A107210QR] [RUISIXD UE JB PAINSEIUW JON3

*S3[qB) 9SAY} JO £ UOISIOA UI Pa310dar 9AIND 9883[0A-JUSLIND pUE dsuodsal [21303ds;

JUSWIAINSEIW [RUISIIO WOIJ PAIRIQI[BIY,

*S9[qe} 959U} JO G UOISIOA UI Pa110dar 9AIND 9583[0A-JUSLIND pUE sasu0dsal [e130ads,

'sIseq [[99 1ad, & uo pajioday,

*S3[q®) 953} JO UOIsIaA JuasaId oY) ur parrodar 9AINd 95eI[0A-JUSLIND pue dsuodsal [e1dadg,

*(911]) YoNnUd (I1YM) 9A1I93[321 ATyS1Y ‘Sunoejuod (uiq) Suros[Sou 90ue)SISAT TBqSNQ ‘I6XT 18 1B PIZI[[RIdWU( JUOL] :3UNIRIU0D,

‘K107e10qRT A319UF 9[qEMIUNY [RUONEN SN =THYN 10Iud) SUNSI], PUE JUIWINSLI AT)SNPUT JTBI[0A0JOYJ [EUONBN 9SAUTYD = INAJN ‘UOII[IS dUI[[LISAIO0IONUI 10 SUI[[RISAID0UBU = IS-0U ‘SdTI0jeI0qRT AS0[OUYIa],
JUBWUOITAUF pue K137es [eornoayy ueder = LA [ ‘SUNydsIofRISIouaIe[os My AMNSUT = HIST ‘9WIsAsaiSaug 2Ie[0S 1y IMmsu] Jjoqunery = gs1-0yd “as* 'susuziny =ass170 “susuziny =s1z0 “os'en luiny =010
‘Ko1re uagoapAy /uoatyis snoydiowe =15-e ‘A30[0UYD9], PUE SIUAIIS [LINISNPUT PIOUBAPY JO 9)NTISUT [eUOTIeN dsaueder = STV ‘BaIe [8)0) =(3) ‘BaI® UONRUTWN[[T Pajeusisap = (ep) ‘eare arnyrade = (de) :suoneiadiqqy

[+2] ST199 8¢ ‘rZA/NVA (€2/11D) AST-OY4 9VL yoCE'ET oSTE80 (ep) TT'+0C TOFSYI (empouiqns) druesIQ
[e2] s1190 £ ‘nSuerloyz (€7/1) LAl vEL [oLE YT SILL80 (ep) 1€°61 £0FLST (empouwrurwr) oruedIQ
[c2] ANA/FSI Tjoqunery (€2/9) AS1-DU4 6'€L 4IT°ST £158°0 (ep) +90'1 13€°0F8§'ST (1199) oruesiQ
oruediQ
[12°07] s1199 Te1I9s 97 ‘dreys (¢1/6) LSTV L'89 bolh 8T L6970 (ep) 8'86€ € 0F88 (ernpouwiqns) 24Qq
uondrsaq (93ep) 213Ud2 ISAL, (%) 1039€F 1114 (zurd A (;wd) BaITY (%) Loudronyya uonesIyIsse[)
/v >r

(ponunuo)) | TATAVL



TABLE 2 | ‘Notable Exceptions’ for single-junction cells and submodules: ‘Top dozen’ confirmed results, not class records, measured under the
global AM1.5 spectrum (1000 Wm~2) at 25°C (IEC 60904-3: 2008 or ASTM G-173-03 global).

Fill
Efficiency Jo. factor Test centre
Classification (%) Area (cm?) V. (V) (mA/cm?) (%) (date) Description
Cells (silicon)
Si 25.0+0.5 4.00 (da) 0.706 42.7% 82.8 Sandia (3/99) UNSW, p-type
PERC [30]
Si 25.8+0.5°  4.008 (da) 0.7241 42.87° 83.1 FhG-ISE (7/17) FhG-ISE, n-type
TOPCon [31]
Si 26.0+0.5°  4.015 (da) 0.7323 42.05¢ 84.3  FhG-ISE (11/19) FhG-ISE, p-type
TOPCon
Si 26.1+0.3% 3.9857(da)  0.7266 42.62¢ 84.3 ISFH (2/18) ISFH, p-type TBC [32]
Si (large) 24.0+0.3f 244.59 (t) 0.6940 41.588 83.3 ISFH (7/19) LONGI, p-type
PERC [33]
Si (large) 25.9+0.4"  350.5(t) 0.7383 41.701 84.1 ISFH (10/24) TRINA, n-type
TOPCon [34]
Si (large) 27.0+0.5  350.0 (t) 0.7447 42.32% 85.8 ISFH (8/24) LONGI, n-type TBC [4]
Si (large) 26.8+0.4! 274.4 () 0.7514 41.45m 86.1 ISFH (10/22)  LONGi, n-type HIT [35]
Si (large) 26.6+0.4! 274.1 () 0.7513 41.30™ 85.6 ISFH (10/22)  LONGI, p-type HIT [36]
Si (large) 27.3+0.4" 243.1(da)  0.7434 42.60% 86.2 ISFH (12/23) LONGi, n-type HBC [4]
GalnP 22.0+0.3° 0.2502 (ap) 1.4695 16.63° 90.2 NREL (1/19) NREL, rear HJ,
strained AlInP [37]
Cells (chalcogenide)
CIGS (thin-film) 23.6x+0.4 0.899 (da) 0.7671 38.30P 80.5 FhG-ISE (1/23) Evolar/UppsalaU [38]
CdTe (thin-film) 23.1+£0.3  0.4507 (da) 0.9048 31.66% 80.6 NREL (5/24) First Solar [39]
CZTSSe (thin-film) 151+0.3  0.2697(da)  0.5299 38.44i 74.0 NPVM (4/24) ToP/CAS [13]
CZTS (thinf; >1.5eV) 13.2+0.3  0.2021 (da)  0.7490 23.40% 68.9 NPVM (5/24) UNSW (Cd-free) [40]
Sb,(S,Se), 10.7+0.4  0.0389 (da)  0.6345 24,55k 68.6 CSIRO (10/24) UNSW
Cells (other)
Perovskite (thin-film) ~ 26.7£0.6%"  0.0519 (da) 1.193 26.491 84.5 NPVM (5/24) USTC [ 41]
Organic (thin-film) 19.2+0.3°% 0.0326 (da) 0.9135 26.61P 79.0 NREL (3/23) SJTU [42]
Dye sensitized 13.0+0.4'  0.1155 (da) 1.0396 15.55P 80.4 FhG-ISE (10/20) EPFL [43]

Abbreviations: (ap) =aperture area, (da) =designated illumination area, (t) =total area, AIST =Japanese National Institute of Advanced Industrial Science and
Technology, CIGS=Culn, Ga Se), CZTS =Cu,ZnSnS,,, CZTSSe = Cu,ZnSnS,  Se , FhG-ISE = Fraunhofer-Institut fiir Solare Energiesysteme, ISFH = Institute for
Solar Energy Research, Hamelin, NREL = National Renewable Energy Laboratory.

2Spectral response reported in Version 36 of these tables.

bNot measured at an external laboratory.

Spectral response and current-voltage curves reported in Version 51 of these tables.

dSpectral response and current-voltage curves reported in Version 55 of these tables.

eSpectral response and current-voltage curve reported in Version 52 of these tables.

fContacting: Front: 12BB, resistance neglecting (brn); Rear: fully metallized, full area contacting (fac).

gSpectral response and current-voltage curves reported in Version 57 of these tables.

hContacting: 16BB, busbar resistance neglecting (brn); Rear: 16BB, grid resistance neglecting (grn) contacting, full area contacting (fac).

iSpectral response and current-voltage curve reported in Version 64 of these tables.

IContacting: Front: Unmetallized; Rear: Rear: 2x9BB, busbar resistance neglecting (brn) contacting, highly reflective (white) chuck (hrc).

kSpectral response and current-voltage curves reported in the present version of these tables.

IContacting: Front: 12BB, busbar resistance neglecting (brn) contacting; Rear: 12BB, grid resistance neglecting (grn) contacting, highly reflective chuck (hrc).
mSpectral response and current-voltage curves reported in Version 61 of these tables.

“Contacting: Front: Unmetallized; Rear: Rear: 2x6BB, busbar resistance neglecting (brn) contacting, highly reflective (white) chuck (hrc).

OSpectral response and Current—VOItage curve reported in Version 54 of these tables.

PSpectral response and current-voltage curves reported in Version 62 of these tables.

dStability not investigated. References [25] and [26] document stability of similar devices.

"Measured using a 10-point IV sweep with constant voltage bias until current change rate <0.07%/min.

SLong-term stability not investigated. References [28] and [29] document stability of similar devices.

‘Long-term stability not investigated. Reference [27] documents stability of similar devices.
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TABLE 4 | Confirmed nonconcentrating terrestrial module efficiencies measured under the global AM1.5 spectrum (1000 W/m?) at a cell

temperature of 25°C (IEC 60904-3: 2008 or ASTM G-173-03 global).

Area Test centre
Classification Effic. (%) (cm?) V. (V) I (A) FF (%) (date) Description
Si (crystalline) 25.4+0.3 18,342 40.30 13.873% 83.4 NREL (7/24) LONGiI [4]
(da)
GaAs (thin-film) 25.1+0.8  866.45 (ap) 11.08 2.303° 85.3 FhG-ISE (11/17)  Alta Devices [60]
CIGS (Cd-free) 19.2+0.5 841 (ap) 48.0 0.456°¢ 73.7 AIST (1/17) Solar Frontier
(70 cells) [61]
CdTe (thin-film) 19.9+£0.3 23,932 (da) 231.5 2.6752 77.1 NREL (6/23) First Solar [62]
Perovskite 19.2+0.44 1027 (da) 59.4 0.4307% 77.1 NREL (12/23) SolaEon [63]
Organic 13.1£0.3¢ 1475 (da) 48.10 0.6015f 67.0 NREL (5/23) Waystech/
Nanobit [64]
Multijunction
InGaP/GaAs/ 32.65+0.7 965 (da) 24.30 1.5208 85.3 AIST (2/22) Sharp (40 cells;
InGaAs 8 series) [65]
Perovskite/Si 26.9+1.0¢ 16,023 (da)  56.18 9.456 81.1 FhG-ISE (6/24)  Oxford PV [66]
a-Si/nc-Si 12.3+0.3" 14,322 () 280.1 0.902i 69.9 ESTI (9/14) TEL Solar,
(tandem) Trubbach Labs [67]
‘Notable Exceptions’
CIGS (large) 18.6+0.6 10,858 (ap) 58.00 4.545 76.8 FhG-ISE (10/19) Miasole [68]
InGaP/GaAs//Si 33.7+0.7 775 (da) 20.3/2.83  1.25/1.93f 86.5/78.0 AIST (2/23) Sharp/Toyota
TI, 4-term [69].
InGaP/GaAs// 31.2+0.7 778 (ap) 20.3/16.9 1.24/.26"  85.7/59.8 AIST (2/23) Sharp/Idemitsu,
CIGS 4-term [69].
Perovskite 17.2+0.5¢ 7200 (t) 103.5 1.579* 75.6 NREL (8/24) Renshine [70]
(large)

Abbreviations: (ap) =aperture area, (da) =designated illumination area, (t) =total area, a-Si=amorphous silicon/hydrogen alloy, a-SiGe = amorphous silicon/
germanium/hydrogen alloy, CIGSS = CulnGaSSe, Effic. = efficiency, FF =fill factor, nc-Si=nanocrystalline or microcrystalline silicon.
aSpectral response and current-voltage curve reported in the present version of these tables.

bSpectral response and current-voltage curve reported in Version 51 of these tables.
°Spectral response and current-voltage curve reported in Version 50 of these tables.
dInitial performance. References [25] and [26] review the stability of similar devices.
¢Initial performance. References [28] and [29] review the stability of similar devices.
fSpectral response and current voltage curve reported Version 62 of these tables.

gSpectral response and current-voltage curve reported in Version 60 of these tables.

hStabilized at the manufacturer to the 2% level following IEC procedure of repeated measurements.
iSpectral response and/or current-voltage curve reported in Version 46 of these tables.

ISpectral response and current-voltage curve reported in Version 55 of these tables.

Table 2 contains what might be described as ‘notable
exceptions’ for ‘one-sun’ single-junction cells and submodules
in the above category. Although not conforming to the
requirements to be recognized as a class record, the devices
in Table 2 have notable characteristics that will be of inter-
est to sections of the photovoltaic community, with entries
based on their significance and timeliness. To encourage
discrimination, the table is limited to nominally 15 entries
with the present authors having voted for their preferences
for inclusion. Readers who have suggestions for notable excep-
tions for inclusion into this or subsequent tables are welcome
to contact any of the authors with full details. Suggestions
conforming to the guidelines will be included on the voting
list for a future issue.

Table 3 was first introduced in Version 49 of these tables and
summarizes the growing number of cell and submodule re-
sults involving high efficiency, one-sun multiple-junction de-
vices (previously reported in Table 1). Table 4 shows the best
results for one-sun modules, both single- and multiple-junction,
whereas Table 5 shows the best results for concentrator cells and
concentrator modules. A small number of ‘notable exceptions’
are also included in Tables 3-5.

2 | New Results

Seventeen new results are reported in the present version of
these tables. The first is the very first entry reported in Table 1
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TABLE 5 | Terrestrial concentrator cell and module efficiencies measured under the ASTM G-173-03 direct beam AM1.5 spectrum at a cell
temperature of 25°C (except where noted for the hybrid and luminescent modules).

Intensity?® Test centre
Classification Effic. (%) Area (cm?) (suns) (date) Description
Single cells
GaAs 30.8+1.95¢ 0.0990 (da) 61 NREL (1/22) NREL, 1 junction (1J)
Si 27.6+1.24 1.00 (da) 92 FhG-ISE (11/04) Amonix back-contact [71]
CIGS (thin-film) 23.3+1.2°%¢  0.09902 (ap) 15 NREL (3/14) NREL [72]
Multijunction cells
AlGalnP/AlGaAs/GaAs/GalnAs(3)  47.1+2.6%f 0.099 (da) 143 NREL (3/19) NREL, 6] inv. metamorphic [57]
(2.15/1.72/1.41/1.17/0.96/0.70eV)
GalnP/GalnAs; GalnAsP/GalnAs 47.6+2.6>8 0.0452 (da) 665 FhG-ISE (5/22) FhG-ISE 4] bonded [73]
GaInP/GaAs/GaInAs/GalnAs 45.7+2.3%F  0.09709 (da) 234 NREL (9/14) NREL, 4] monolithic [74]
InGaP/GaAs/InGaAs 44.4+2.6 0.1652 (da) 302 FhG-ISE (4/13) Sharp, 3J inverted
metamorphic [75]
GalnAsP/GalnAs 35.5+1.25 0.10031 (da) 38 NREL (10/17) NREL 2-junction (21) [76]
Minimodule
GalnP/GaAs; GaInAsP/GalnAs 43.4+2.40k 18.2 (ap) 340! FhG-ISE (7/15)  Fraunhofer ISE 47 (lens/cell) [77]
Submodule
GalnP/GalnAs/Ge; Si 40.6+2.0% 287 (ap) 365 NREL (4/16) UNSW 47 split spectrum [78]
Modules
Si 20.5+0.8° 1875 (ap) 79 Sandia (4/89)! Sandia/UNSW/ENTECH
(12 cells) [79]
Three junction (37J) 35.9+1.8™ 1092 (ap) N/A NREL (8/13) Amonix [80]
Four junction (47) 38.9+2.5" 812.3 (ap) 333 FhG-ISE (4/15) Soitec [81]
Hybrid module®
4-Junction (47J)/bifacial c-Si 34.24+1.9%0 1088 (ap) CPV/PV FhG-ISE (9/19) FhG-ISE (48/8 cells; 4T) [82]
‘Notable exceptions’
Si (large area) 21.7+0.7 20.0 (da) 11 Sandia (9/90)" UNSW laser grooved [83]
Luminescent minimodule® 7.1+0.2 25 (ap) 2.5P ESTI (9/08) ECN Petten, GaAs cells [84]
4J minimodule 41.4%2.6° 121.8 (ap) 230 FhG-ISE (9/18) FhG-ISE, 10 cells [85]

Note: Following the normal convention, efficiencies calculated under this direct beam spectrum neglect the diffuse sunlight component that would accompany this
direct spectrum. These direct beam efficiencies need to be multiplied by a factor estimated as 0.8746 to convert to thermodynamic efficiencies [86].

Abbreviations: (ap) =aperture area, (da) =designated illumination area, CIGS = CulnGaSe,, Effic. = efficiency, ESTI= European Solar Test Installation, FhG-
ISE=Fraunhofer-Institut fiir Solare Energiesysteme, NREL = National Renewable Energy Laboratory.

20ne sun corresponds to direct irradiance of 1000 Wm~2.

YNot measured at an external laboratory.

Spectral response and current-voltage curve reported in Version 60 of these tables.

dMeasured under a low aerosol optical depth spectrum similar to ASTM G-173-03 direct [87].

eSpectral response and current-voltage curve reported in Version 44 of these tables.

fSpectral response and current-voltage curve reported in Version 54 of these tables.

gSpectral response and current-voltage curve reported in Version 61 of these tables.

hSpectral response and current-voltage curve reported in Version 46 of these tables.

iSpectral response and current-voltage curve reported in Version 42 of these tables.

ISpectral response and current-voltage curve reported in Version 51 of these tables.

kDetermined at IEC 62670-1 CSTC reference conditions.

IRecalibrated from original measurement.

mReferenced to 1000 W/m? direct irradiance and 25°C cell temperature using the prevailing solar spectrum and an in-house procedure for temperature translation.
"Measured under IEC 62670-1 reference conditions following the current IEC power rating draft 62670-3.

°Thermodynamic efficiency. Hybrid and luminescent modules measured under the ASTM G-173-03 or IEC 60904-3: 2008 global AM1.5 spectrum at a cell temperature
of 25°C. 4-terminal module with external dual-axis tracking. The power rating of CPV follows the IEC 62670-3 standard; front power rating of flat plate PV based on
IEC 60904-3, -5, -7, -10, and 60891 with modified current translation approach; rear power rating of flat plate PV based on IEC TS 60904-1, -2, and 60891.
PGeometric concentration.

10 Progress in Photovoltaics: Research and Applications, 2025

95UB017 SUOWIWOD aA 181D 3|qeoljdde ay) Aq pausenob ae ssppile VO ‘8sn JO Sajn 10j AIq)T8ulUO AB[IM UO (SUORIPUOD-PUE-SWLBIWO0D" A3 1M A1 1[pulUO//SANY) SUONIPUOD PUe SWis | 8u 89S *[6Z0z/20/ST] Uo ARiqiTauliuo Ae|im ‘snbeyoliqig Areiqi 13d3 Aq 298¢ 'did/z00T 0T/I0p/wo0 A8 | AreJq iUl juo//Sdny Wouy pspeojumod ‘T ‘520z X6ST660T



(‘one-sun cells and submodules’). An efficiency of 27.4% is re-
ported for a large-area (166 cm?; half-cut M10 wafer) n-type sil-
icon hybrid interdigitated-back-contact (HTBC) cell, with rear
heterojunction (HJT) p-type contacts and rear TOPCon n-type
contacts, fabricated by LONGi Solar [4] and measured by the
Institute fiir Solarenergieforschung (ISFH). The cell, establish-
ing a new outright record for silicon, has both polarity contacts
on the rear surface, as already noted, restricting loss by the ab-
sence of contacts on the front illuminated surface.

The second new result is 11.95% efficiency for a 10cm?
CuZZnSnSySe4_y (CZTSSe) shingled minimodule fabricated by
the Institute of Physics, Chinese Academy of Sciences (IoP/CAS)
[13] and measured by the Chinese National Photovoltaic Industry
Measurement and Testing Center (NPVM). A third new result
is 23.2% efficiency for a small area (20-cm?) lead halide per-
ovskite minimodule consisting of eight cells connected in series,
with the minimodule fabricated by the National University of
Singapore (NUS) in conjunction with the Solar Energy Research
Institute of Singapore (SERIS) [18] and again measured by
NPVM. The final new result in table is a new record of 20.6%
for a much larger 216-cm? lead halide perovskite submodule
[19] consisting of 29 serially connected cells, fabricated by the
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FIGURE 1 | (a) External quantum efficiency (EQE) for the new
silicon cell results reported in this issue (some curves are normalized).
(b) Corresponding current density-voltage (JV) curves.

Korea Research Institute of Chemical Technology (KRICT) in
conjunction with and Korean semiconductor equipment maker
UniTest and measured by the Fraunhofer Institute for Solar
Energy Systems (FhG-ISE).

Six new results are also reported in Table 2 (one-sun ‘notable ex-
ceptions’). The first is an efficiency of 25.9% for a very large area
(350.5cm?, the largest in these tables), silicon n-type TOPCon
(tunnel oxide passivated contact) cell fabricated by Trina Solar
and measured by ISFH. The second is an efficiency of 27.0% for
a similarly large area (350 cm?) silicon n-type TOPCon interdigi-
tated back contact (TBC) cell [34] fabricated by LONGi Solar and
measured by ISFH. The third is the movement of the result for
the 27.3% efficient,large-area n-type silicon cell also fabricated
by LONGi Solar in 2023 from Table 1 to Table 2, notable as it
is the most efficient, all-HJT interdigitated back contact (HBC)
solar cell.

The next two results involve small area (< 1-cm?) chalcogenide
thin-film solar cells. The first is an increase in efficiency to
23.1% for a small area (0.45-cm?) CdTe-based cell fabricated
by First Solar [39] and measured by NREL, improving on the
22.6% result first reported in the previous version of these ta-
bles [1]. The second new chalcogenide result is for a nominally
pure-sulfide CZTS solar cell with efficiency increased to 13.2%

,’ ~+~NUS/SERIS 23.2% perovskite minimodule (20cm2)
~o—KRICT 20.6% perovskite submodule (216cm2, V/29, 29J) (fwd)
—+—|oP/CAS 11.95% CZTSSe minimadule (10cm2) 3
First Solar 23.1% CdTe cell (0.45cm2)
UNSW 13.2% CZTS cell (0.2cm2)
-=-UNSW 10.7% Sb2(S,Se)3 cell (0.04cm2)

EQE, %

500 700 900 1100 1300
Wavelength, nm

(b)

&
~#+-NUS/SERIS 23.2% perovskite minimodule(20cm2, V/8, 8J) (fwd)
10 —<NUS/SERIS 23.2% perovskite minimodule (20cm2, V/8, 8J) (rev)
-o-KRICT 20.6% perovskite submodule (216cm2, V/29, 29J) (fwd)
==KRICT 20.6% perovskite submodule (216cm2, V/29, 29J) (rev)
~—10P/CAS 11.95% CZTSSe minimodule (10cm2, V/4, 4J) (fwd)
5 IoP/CAS 11.95% CZTSSe minimodule (10cm2, V/4, 4J) (rev)
First Solar 23.1% CdTe cell (0.45cm2)
UNSW 13.2% CZTS cell (0.2cm2) (av)
UNSW 10.7% Sb2(S,Se)3 cell (0.04cm2) (av)

0 0.2 04 0.6 0.8 1 1.2
Voltage, V

Current density, mA/cm?

FIGURE2 | (a)External quantum efficiency (EQE) for new thin-film
cell, minimodule and submodule results reported in this issue (some
curves are normalized). (b) Corresponding current density-voltage (JV)
curves.
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FIGURE 3 | (a) External quantum efficiency (EQE) for new
2-terminal double-junction cell and minimodule results reported in
this issue (results are normalized). (b) Corresponding current density-
voltage (JV) curves.

for a small-area (0.2-cm?) cell fabricated by the University of
New South Wales (UNSW), Sydney, and measured at NPVM.
Because various alloying agents can reduce the bandgap (E,) of
this material, leading to an efficiency increase, future entries
will be restricted to E,>1.5€V, as determined from the maxi-
mum slope of the EQE curve. The final new result in Table 2
creates a new chalcogenide category, with over 10% efficiency
confirmed for an antimony sulphide selenide cell. An efficiency
0f10.7% was measured for a 0.04-cm? Sb,(S,Se), cell fabricated at
the University of New South Wales, Sydney (UNSW), and mea-
sured by the Commonwealth Scientific and Industrial Research
Organization (CSIRO). For these last three results, cell area is
too small for classification as an outright record, with solar cell
efficiency targets in governmental research programs generally
specified in terms of a cell area of 1cm? or larger [88-90].

There are also four new results reported in Table 3 describing
results for one-sun, multijunction devices—all involving per-
ovskites in tandem cells. An efficiency of 34.6% is reported for
a 1cm?, 2-terminal, silicon/perovskite tandem cell fabricated by
LONGi Central R&D Institute and measured at the European
Solar Test Installation (ESTI) at the European Commission's
Joint Research Centre, Ispra, beating out LONGi's earlier 34.2%
result. The second is an efficiency of 30.1% for a much larger
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FIGURE 4 | (a) External quantum efficiency (EQE) for the new
module results reported in this issue. (b) Corresponding current
density-voltage (JV) curves.

area (212-cm?), 2-terminal, silicon/perovskite tandem cell again
fabricated by LONGi and measured by FhG-ISE.

The third new result in Table 3 is 24.8% efficiency for a 65-
cm?, perovskite/perovskite tandem cell minimodule fabricated
by Nanjing University and Renshine Solar (Suzhou) Co., Ltd.
and measured by the Japan Electrical Safety and Environment
Technology Laboratories (JET). The final new result in this table
as a ‘notable exception’ is 25.1% for a very small area (0.035-cm?)
perovskite/organic 2-terminal tandem cell again fabricated by
HarvSolar and the City University of Hong Kong (CityU-HK)
and again measured by JET.

There are three new results reported in Table 4 (one-sun modules)
involving a range of commercially sized silicon and perovskite
technologies. The first is a new efficiency level of 25.4% reported for
a 1.8-m? silicon module [60] fabricated by LONGi and measured
by NREL. The second result is a new record of 26.9% efficiency
for a 1.6-m? silicon/perovskite tandem cell module fabricated by
Oxford PV and measured by FhG-ISE. The third is an improve-
ment to 17.2% efficiency for a 0.72-m? perovskite thin-film module
[64] fabricated by Renshine and again measured by NREL.

The EQE spectra for the new silicon cells reported in the pres-
ent issue of these tables are shown in Figure 1a, with Figure 1b
showing the current density-voltage (JV) curves for the same
devices. Figure 2a,b shows the corresponding EQE and JV
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curves for several of the new thin-film cell, minimodule and sub-
module results. Figure 3a,b shows these for the new 2-terminal
double-junction tandem cell and minimodule results, whereas
Figure 4a,b shows these for the new module results.
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